Bis(silylaminodiarylphosphoranylsilylmethyl- C, N)-tin(II) and -lead(II) complexes and their precursors; structures of $\mathrm{H}\left(\mathrm{LL}^{\prime}\right), \mathrm{H}\left(\mathrm{LL}^{\prime \prime}\right)$, $\mathrm{Sn}\left(\mathrm{LL}^{\prime \prime}\right)_{2}$ and $\mathrm{Pb}\left(\mathrm{LL}^{\prime \prime}\right)_{2} ;\left[\mathrm{LL}^{\prime}\right]^{-}=\left[\mathrm{CH}\left(\mathrm{SiMe}_{3}\right) \mathrm{P}(\mathrm{Ph})_{2}=\mathrm{NSiMe}_{3}\right]^{-}$, $\left[L L L^{\prime \prime}\right]^{-}=\left[\mathrm{CH}\left(\mathrm{SiMe}_{3}\right) \mathrm{P}(\mathrm{Ph})\left\{=\mathrm{NSi}\left(\mathrm{Me}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}-1,2\right\}\right]^{-}$

Peter B. Hitchcock ${ }^{\text {a }}$, Michael F. Lappert ${ }^{\text {a,* }}$, Zhong-Xia Wang ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Department of Chemistry, University of Sussex, Brighton BN1 9QJ, UK
${ }^{\mathrm{b}}$ Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China

Received 19 December 2005; received in revised form 8 February 2006; accepted 8 February 2006
Available online 23 February 2006

Abstract

We report a series (a)-(d) of tandem reactions involving the conversion of: (a) $2 \mathrm{CH}_{2}\left(\mathrm{SiMe}_{3}\right) \mathrm{P}\left(\mathrm{Ph}_{2}=\mathrm{NSiMe}_{3}\left[\equiv 2 \mathrm{H}\left(\mathrm{LL}{ }^{\prime}\right)\right]\right.$ (III) into successively $\left[\mathrm{Li}\left(\mathrm{LL}^{\prime}\right)\right]_{2}$ (1a) and $\left[\mathrm{Pb}\left(\mathrm{LL}^{\prime}\right)_{2}\right]$ (3a); (b) $\mathbf{1 a}$ in turn into $\left[\mathrm{LiCH}_{(}^{\prime}\left(\mathrm{SiMe}_{3}\right) \mathrm{P}(\mathrm{Ph})\left\{=\mathrm{NSi}\left(\mathrm{Me}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}-1,2\right]_{2}\left\{\equiv\left[\mathrm{Li}\left(\mathrm{LL}{ }^{\prime \prime}\right)\right]_{2}\right\}\right.$ (2) and $\left[\mathrm{Pb}\left(\mathrm{LL}^{\prime \prime}\right)_{2}\right]$ (4); (c) 1a successively into $\mathrm{Sn}\left(\mathrm{LL}^{\prime}\right) \mathrm{Cl}$ (5) and $\left[\mathrm{Sn}\left(\mathrm{LL}^{\prime \prime}\right)_{2}\right]$ (6); (d) $2 \mathrm{Li}\left[\mathrm{CH}\left(\mathrm{SiMe}_{2} \mathrm{NEt}_{2}\right) \mathrm{P}\left(\mathrm{Ph}_{2}=\mathrm{NSSAMe}_{3}\right]\right.$ (1b) into $\mathrm{Pb}\left[\mathrm{CH}\left(\mathrm{SiMe}_{2} \mathrm{NEt}_{2}\right) \mathrm{P}(\mathrm{Ph})_{2}=\mathrm{NSiMe}_{3}\right]_{2}(\mathbf{3 b})$. Experimental details for the preparation and characterisation (including elemental analysis and multinuclear NMR spectra in $\mathrm{C}_{6} \mathrm{D}_{6}$ and EI mass spectra) of 1a, 2, 3a, 3b, 4, 6, III (a new synthesis) and IV are provided. The X-ray structures of crystalline $\mathbf{4}, \mathbf{6}$, III and IV are presented; those of $\mathbf{1 a}, \mathbf{2}$ and $\mathbf{3 a}$ were previously published. © 2006 Elsevier B.V. All rights reserved.

Keywords: 1-Aza-2-phospha(V)allyls; Lithium; Tin(II); Lead(II)

1. Introduction

1-Aza-2-phospha(V)allyl ligands have featured extensively in coordination chemistry [1,2]. The structure of the crystalline lithium compound I dates from 1995 [3]. The crystalline neutral donor-free binuclear compound II has a ladder structure in which the ligand is both N, C-chelating and via the $3-\mathrm{C}$ site bridging [1].

In a preliminary communication we reported that the conjugate acid III of such a ligand (abbreviated as $\left.\mathrm{H}\left[L^{\prime}\right]\right)$ is a convenient precursor to its $\operatorname{Li}\left(\mathrm{LL}^{\prime}\right)$ (1a), (KLL^{\prime}) and $\mathrm{Pb}\left(\mathrm{LL}^{\prime}\right)_{2}$ (3a) derivatives, and also of two ortho-cyclosilylated compounds: the $\left[\operatorname{Li}\left(\mathrm{LL}^{\prime \prime}\right)\right]$ (2) and $\mathrm{Pb}\left(\mathrm{LL}^{\prime \prime}\right)_{2}$ (4) complexes, $\left[\mathrm{H}\left(\mathrm{LL}^{\prime \prime}\right)=\mathrm{IV}\right]$; the crystalline 2 and 3a were X-ray-characterised [4]. While III was originally obtained from $\left[\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{NP}(\mathrm{Me}) \mathrm{Ph}_{2}\right] \mathrm{I}\right.$ and $\mathrm{LiBu}^{n}[5]$,

[^0]it was more conveniently prepared by the Staudinger reaction of $\mathrm{CH}_{2}\left(\mathrm{SiMe}_{3}\right) \mathrm{PPh}_{2}$ with $\mathrm{Me}_{3} \mathrm{SiN}_{3}[6]$.

In a follow-up paper we described the synthesis and structures of the crystalline compounds $\left[\mathrm{Li}\left(\mathrm{LL}^{\prime}\right)\left(\mathrm{OEt}_{2}\right)_{2}\right]$ and the

V

1b

Scheme 1. [7].
binuclear ether-free compound \mathbf{V}, as well as the conversion of the former into: (i) $\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2} \mathrm{P}(\mathrm{Ph})_{2}=\mathrm{NSiMe}_{3}$ and (ii) the phosphinimine $\mathrm{CH}_{2}\left\{\mathrm{SiMe}_{2}\left(\mathrm{NEt}_{2}\right)\right\} \mathrm{P}(\mathrm{Ph})_{2}=\mathrm{NSiMe}_{3}$ and its lithium salt $\mathbf{1 b}$, as summarised in Scheme 1 [7].

We now report details not available in our earlier communication [4] regarding compounds 1a, $\mathbf{2}$ and 3a [5], and extensions to the synthesis and characterisation of other $\mathrm{Sn}(\mathrm{II})$ and $\mathrm{Pb}(\mathrm{II})$ complexes of the ligands $\left[\mathrm{LL}^{\prime}\right]^{-}$and $\left[\mathrm{LL}^{\prime \prime}\right]^{-}$, as well as the structures of the crystalline proligands III $\left[\mathrm{H}\left(\mathrm{LL}^{\prime}\right)\right]$ and IV $\left[\mathrm{H}\left(\mathrm{LL}^{\prime \prime}\right)\right]$.

2. Results and discussion

2.1. Objectives

As indicated in the preceding section, we have previously reported on complexes derived from the 1-aza-2phospha(V)allyl ligands $[\mathrm{LL}]^{-}$(VI) and $\left[\mathrm{LL}^{\prime \prime}\right]^{-}$(VII) [4,6,7]. The principal focus of this paper is on the synthesis and structures of the corresponding homoleptic tin(II) and lead(II) complexes, $\mathrm{M}\left(\mathrm{LL}^{\prime}\right)_{2}$ and $\mathrm{M}\left(\mathrm{LL}^{\prime \prime}\right)_{2}$.

VIa $\mathrm{R}=\mathrm{Me}$
VIb $\mathrm{R}=\mathrm{NEt}_{2}$

2.2. Synthesis of lithium, $\operatorname{tin}(I I)$ and lead(II) silyliminodiarylphosphoranylsilylmethyls

The preparation of compounds $\left[\operatorname{Li}\left(\mathrm{LL}^{\prime}\right)\right]_{2}(\mathbf{1 a}),\left[\mathrm{Li}\left(\mathrm{LL}^{\prime \prime}\right)\right]_{2}$ (2), $\quad\left[\mathrm{Pb}\left(\mathrm{LL}^{\prime}\right)_{2}\right] \quad$ (3a), $\quad\left[\mathrm{Pb}\left\{\mathrm{CH}\left(\mathrm{SiMe}_{2} \mathrm{NEt}_{2}\right) \mathrm{P}(\mathrm{Ph})_{2}=\mathrm{NSiMe}_{3}\right\}_{2}\right]$
(3b), $\left[\mathrm{Pb}\left(\mathrm{LL}^{\prime \prime}\right)_{2}\right]$ (4) and $\left[\operatorname{Sn}\left(\mathrm{LL}^{\prime \prime}\right)_{2}\right](6)$ is summarised in Scheme 2. Thus, treatment of $\mathrm{H}\left(\mathrm{LL}^{\prime}\right)$ (III) [7] with LiBu^{n} afforded (i in Scheme 2) 1a. From the latter or 1b [7] and PbCl_{2} there was obtained (ii in Scheme 2) 3a or 3b, respectively. Treatment of $\mathbf{1 a}$ with LiBu^{n} yielded (iii in Scheme 2) 2, which with PbCl_{2} gave (ii in Scheme 2) 4. Whereas $\left[\mathrm{Li}\left(\mathrm{LL}^{\prime \prime}\right)_{2}\right]$ (2) was thus an effective ligand transfer reagent for securing the homoleptic $\mathrm{Pb}(\mathrm{II})$ compound 4 , curiously this proved not to be the case (possibly for steric reasons) for the tin(II) analogue 6. The latter was, however, conveniently obtained by treating $\left[\mathrm{Li}\left(\mathrm{LL}^{\prime}\right)\right]_{2}$ (1a) successively (iv and v in Scheme 2) with equivalent portions of SnCl_{2} and LiBu^{n}.

The transformation of the ligand $\left[\mathrm{LL}^{\prime}\right]^{-}$(VIa) into the cyclosilylated $\left[L^{\prime \prime}\right]^{-}$(VII) has previously been explained [4] by proposing that the reaction of $\operatorname{Li}\left(\mathrm{LL}^{\prime}\right)$ (1a) with LiBu^{n} proceeded via an ortho-lithiated intermediate which underwent an intramolecular displacement of Me^{-}at silicon by the o-carbanion thus generating $1 / 2\left[\mathrm{Li}\left(\mathrm{LL}^{\prime \prime}\right)\right]_{2}$ (2) and LiMe [4]; the reaction was shown to be catalytic in LiBu^{n}, interpreted as due to the eliminated LiMe formed in the initiation step being able to participate in the propagation cycle. We now suggest that a similar mechanism is operative in step v of Scheme 2 in the conversion of $\mathbf{1 a}$ into $\mathbf{6}\left[\mathbf{1 a} \xrightarrow{\text { iv }} \operatorname{SnCl}\left(\mathrm{LL}^{\prime}\right)(5) \xrightarrow{\mathrm{v}} 1 / 2 \mathrm{SnCl}\left(\mathrm{LL}^{\prime \prime}\right)_{2}(\mathbf{6})\right]$. The evidence for the intermediacy of 5 rests on mass spectral evidence (molecular ion $[5]^{+}$observed on the volatiles-free sample) and the ${ }^{1} \mathrm{H}$ NMR spectrum which showed that the sample in $\mathrm{C}_{6} \mathrm{D}_{6}$ had the appropriate signals for 5 , albeit with minor impurities; attempts to crystallise 5 from various solvents $\left(\mathrm{C}_{6} \mathrm{H}_{14}, \mathrm{Et}_{2} \mathrm{O}\right.$ or $\left.\mathrm{C}_{6} \mathrm{H}_{6}\right)$ failed. As for step v, we suggest that 5 with LiBu^{n} forms a transient ortho-lithiated intermediate 7 , which upon cyclosilylation generates $\mathbf{8}$, which disproportionates yielding $1 / 2(6)$ with oligomeric $\mathrm{SnMe}_{2}, \mathrm{SnBu}_{2}^{n}$ or SnCl_{2} as coproduct. Metallation of an iminophosphorane was first demonstrated by Stuckwisch, as in $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{NPh}$ with successively $\mathrm{LiPh}, \mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ giving $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}-2$ [8].

Scheme 2. Synthesis of (silyliminodiarylphosphoranylsilylmethyl- C, N) $\operatorname{tin}(\mathrm{II})$ or -lead(II) complexes 3-6 and their lithium precursors 1a, 1b [7] and 2. Reagents and conditions: (i) $2 \mathrm{LiBu}^{n}$, hexane, $-20^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$; (ii) $\mathrm{PbCl}_{2}, \mathrm{Et}_{2} \mathrm{O},-45^{\circ} \mathrm{C}$ to ca. $20^{\circ} \mathrm{C}, 15 \mathrm{~h}$; (iii) $2 \mathrm{LiBu}^{n}$, hexane, reflux, 4 h ; (iv) 2 SnCl , $\mathrm{Et}_{2} \mathrm{O}$, $-45^{\circ} \mathrm{C}$ to ca. $20^{\circ} \mathrm{C}, 15 \mathrm{~h}$; (v) $2 \mathrm{LiBu}^{n},-78^{\circ} \mathrm{C}$ to ca. $20^{\circ} \mathrm{C}, 4 \mathrm{~h}$.

7

$8 \mathrm{X}=\mathrm{Me}, \mathrm{Bu}^{\mathrm{n}}$ or Cl

Crystalline compounds 1a, 2, 3a, 3b, 4 and $\mathbf{6}$ gave satisfactory microanalytical data ($\mathrm{C}, \mathrm{H}, \mathrm{N}$) as well as ${ }^{1} \mathrm{H}$ (for 1a, see also [4]), ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\},{ }^{7} \mathrm{Li}\left\{{ }^{1} \mathrm{H}\right\}$ (for 1a and 2), ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ (for 6), ${ }^{119} \mathrm{Sn}\left\{{ }^{1} \mathrm{H}\right\}$ (for 6) and ${ }^{207} \mathrm{~Pb}\left\{{ }^{1} \mathrm{H}\right\}$ (for 3a, 3b and 4) NMR spectra; for such data on $\mathbf{1 b}$, see [7]. The ${ }^{7} \mathrm{Li}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral chemical shift in $\mathrm{C}_{6} \mathrm{D}_{6}$ for $\mathbf{1 b}(\delta-0.76)$ was at significantly lower frequency than for $\mathrm{Li}\left(\mathrm{LL}^{\prime}\right)$ (1a) or $\left[\operatorname{Li}\left(\mathrm{LL}^{\prime \prime}\right)\right]_{2}(\mathbf{2})$, which may be due to a close $\mathrm{Et}_{2} \mathrm{~N} \cdots \mathrm{Li}$ contact in 1b. Each of the two methyl groups attached to the silicon atom of the five-membered CCPNSi ring of each of the compounds $\left[\mathrm{Li}\left(\mathrm{LL}^{\prime \prime}\right)\right]_{2}(\mathbf{2}),\left[\mathrm{Pb}\left(\mathrm{LL}^{\prime \prime}\right)_{2}\right](4)$ and $\left[\mathrm{Sn}\left(\mathrm{LL}^{\prime \prime}\right)_{2}\right](6)$ was magnetically distinct as evident from both their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra in $\mathrm{C}_{6} \mathrm{D}_{6}$, one being endo- and the other exo- in conformation. Likewise, such spectra showed that the two silylmethyl groups of the $\mathrm{SiMe}_{2} \mathrm{NEt}_{2}$ moiety of $\left[\mathrm{Pb}\left\{\mathrm{CH}\left(\mathrm{SiMe}_{2} \mathrm{NEt}_{2}\right) \mathrm{P}(\mathrm{Ph})_{2}=\mathrm{NSiMe}_{3}\right\}_{2}\right](\mathbf{3 b})$ are diasterotopic as illustrated in $\mathbf{9}$, a Newman projection taken through the $\alpha-\mathrm{C}-\mathrm{Si}$ vector.

9

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{3 a}, \mathbf{3 b}$ and $\mathbf{4}$ showed singlets at $\delta 19.5,17.05$ and 40.3 , respectively, with satellites due to ${ }^{2} J\left({ }^{31} \mathrm{P}-{ }^{207} \mathrm{~Pb}\right)$. The ${ }^{207} \mathrm{~Pb}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra revealed triplets centred at $\delta 2787.6$ (3a), 2936.9 (3b) and 1998.3 (4). Thus, it is evident that 3a and 3b had the closer ${ }^{31} \mathrm{P}$ and ${ }^{207} \mathrm{~Pb}$ chemical shifts. This indicates that this disparity for $\mathbf{4}$ is determined principally by the fused bicyclic structure of the ligand in $\mathbf{4}$, and that the different substituents on silicon in 3a and 3b have little influence on these parameters. The EI-MS of each of $\mathbf{3 a}, \mathbf{3 b}$ and $\mathbf{4}$ gave a weak parent ion.

The ${ }^{119} \operatorname{Sn}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{6}$ displayed a triplet due to coupling with two equivalent phosphorus atoms, ${ }^{2} J\left({ }^{119} \mathrm{Sn}-{ }^{31} \mathrm{P}\right)=162.5 \mathrm{~Hz}$. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum showed a singlet with satellites due to ${ }^{119 / 117} \mathrm{Sn}$ coupling, ${ }^{2} J\left({ }^{31} \mathrm{P}-{ }^{119 / 117} \mathrm{Sn}\right)=162.6 \mathrm{~Hz}$. The ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum comprised two sets of signals: the first, a singlet with ${ }^{119 / 117} \mathrm{Sn}$ satellites, ${ }^{2} J\left({ }^{29} \mathrm{Si}-{ }^{119 / 117} \mathrm{Sn}\right)=53.5 \mathrm{~Hz}$; and the second, a doublet due to coupling to phosphorus, ${ }^{2} J\left({ }^{29} \mathrm{Si}-{ }^{31} \mathrm{P}\right)=7.3 \mathrm{~Hz}$. The EI-mass spectrum of 6 showed a weak $\left[\mathrm{Sn}\left(\mathrm{LL}^{\prime \prime}\right)_{2}\right]^{+}$parent and a strong $\left[\mathrm{Sn}_{2}\left(\mathrm{LL}^{\prime \prime}\right)_{2}-2\right]^{+}$ion; the latter may have arisen from a recombination of fragments in the mass spectrometer.

2.3. The X-ray structures of the crystalline compounds $\mathbf{4}, \mathbf{6}$,

 III and IVThe molecular structure of the crystalline lead(II) complex $\left[\mathrm{Pb}\left(\mathrm{LL}^{\prime \prime}\right)_{2}\right](4)$ is illustrated in Fig. 1 and selected geometric parameters are listed in Table 1. The fourcoordinate lead atom is the centre of a distorted trigonal bipyramid, the N1 and N2 atoms axial and the C1 and C19 atoms with the stereochemically active lone pair occupying the equatorial sites. The central five-membered ring of each $\mathrm{Pb}\left(\mathrm{LL}^{\prime \prime}\right)$ moiety is coplanar with its fused orthophenylene ring. The dihedral angle between: (a) the

Fig. 1. Molecular structure of $\left[\mathrm{Pb}\left(\mathrm{LL}^{\prime \prime}\right)_{2}\right](4)$.

P1N1Si1C2C7 and the C1P1N1 planes is $56.23(0.28)^{\circ}$; (b) the C 1 P 1 N 1 and C 1 N 1 Pb planes is $13.38(0.54)^{\circ}$; (c) the C 1 N 1 Pb and $\mathrm{PbC19N} 2$ planes is $87.29(0.27)^{\circ}$; (d) the $\mathrm{PbC19N} 2$ and the C 19 N 2 P 2 planes is $17.38(0.17)^{\circ}$. The lead atom is ca. $0.49 \AA$ on one side of the C1P1N1 plane with C 2 , Sil and Si 2 at ca. $1.46,1.20$ and $1.48 \AA$ on the opposite side; the corresponding values for the other $\mathrm{Pb}\left(\mathrm{LL}^{\prime \prime}\right)$ moiety are $0.635 \AA$ for the Pb atom on one side of the C19N2P2 plane with on the opposite side C26, Si3

Table 1

Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 4

Bond length (\AA)			
$\mathrm{Pb}-\mathrm{C}(1)$	$2.429(7)$	$\mathrm{P}(2)-\mathrm{C}(26)$	$1.815(9)$
$\mathrm{Pb}-\mathrm{C}(19)$	$2.453(8)$	$\mathrm{Si}(1)-\mathrm{N}(1)$	$1.692(7)$
$\mathrm{Pb}-\mathrm{N}(1)$	$2.594(6)$	$\mathrm{Si}(1)-\mathrm{C}(14)$	$1.831(10)$
$\mathrm{Pb}-\mathrm{N}(2)$	$2.607(6)$	$\mathrm{Si}(1)-\mathrm{C}(15)$	$1.851(11)$
$\mathrm{P}(1)-\mathrm{N}(1)$	$1.599(7)$	$\mathrm{Si}(1)-\mathrm{C}(7)$	$1.902(14)$
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.762(7)$	$\mathrm{Si}(2)-\mathrm{C}(1)$	$1.849(7)$
$\mathrm{P}(1)-\mathrm{C}(2)$	$1.815(11)$	$\mathrm{Si}(3)-\mathrm{N}(2)$	$1.704(6)$
$\mathrm{P}(1)-\mathrm{C}(8)$	$1.807(8)$	$\mathrm{Si}(3)-\mathrm{C}(33)$	$1.840(10)$
$\mathrm{P}(2)-\mathrm{N}(2)$	$1.582(6)$	$\mathrm{Si}(3)-\mathrm{C}(32)$	$1.884(9)$
$\mathrm{P}(2)-\mathrm{C}(19)$	$1.748(8)$	$\mathrm{Si}(3)-\mathrm{C}(31)$	$1.904(9)$
$\mathrm{P}(2)-\mathrm{C}(20)$	$1.811(8)$	$\mathrm{Si}(4)-\mathrm{C}(19)$	$1.859(8)$
Bond angle $\left(^{\circ}\right)$		$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(2)$	$115.0(4)$
$\mathrm{C}(1)-\mathrm{Pb}-\mathrm{C}(19)$	$92.7(3)$	$\mathrm{C}(8)-\mathrm{P}(1)-\mathrm{C}(2)$	$105.2(4)$
$\mathrm{C}(1)-\mathrm{Pb}-\mathrm{N}(1)$	$66.2(2)$	$\mathrm{N}(2)-\mathrm{P}(2)-\mathrm{C}(19)$	$110.0(4)$
$\mathrm{C}(19)-\mathrm{Pb}-\mathrm{N}(1)$	$90.8(2)$	$\mathrm{N}(2)-\mathrm{P}(2)-\mathrm{C}(20)$	$112.1(4)$
$\mathrm{C}(1)-\mathrm{Pb}-\mathrm{N}(2)$	$90.2(2)$	$\mathrm{C}(19)-\mathrm{P}(2)-\mathrm{C}(20)$	$108.4(4)$
$\mathrm{C}(19)-\mathrm{Pb}-\mathrm{N}(2)$	$65.2(2)$	$\mathrm{N}(2)-\mathrm{P}(2)-\mathrm{C}(26)$	$103.8(4)$
$\mathrm{N}(1)-\mathrm{Pb}-\mathrm{N}(2)$	$146.0(2)$	$\mathrm{C}(19)-\mathrm{P}(2)-\mathrm{C}(26)$	$117.1(4)$
$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{C}(1)$	$109.5(4)$	$\mathrm{C}(20)-\mathrm{P}(2)-\mathrm{C}(26)$	$105.4(4)$
$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{C}(8)$	$111.7(4)$	$\mathrm{P}(2)-\mathrm{C}(19)-\mathrm{Pb}$	$91.9(3)$
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(8)$	$110.6(4)$	$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{Pb}$	$92.4(3)$
$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{C}(2)$	$104.7(5)$	$\mathrm{Si}(3)-\mathrm{N}(2)-\mathrm{Pb}$	$134.5(3)$
$\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{Si}(1)$	$116.7(5)$	$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{Si}(2)$	$124.4(4)$
$\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{Pb}$	$131.4(3)$	$\mathrm{Si}(2)-\mathrm{C}(1)-\mathrm{Pb}$	$109.4(3)$
$\mathrm{P}(2)-\mathrm{N}(2)-\mathrm{Pb}$	$90.4(3)$		

and Si 4 at ca. 1.42, 1.23 and $1.55 \AA$. The P 1 and P 2 atoms are ca. 0.22 and $0.28 \AA$ out of the C 1 N 1 Pb and C 19 N 2 Pb planes, respectively.

The mean $\mathrm{Pb}-\mathrm{N}$ distance in $\mathbf{4}$ is close to the $2.678 \pm 0.024 \AA$ of $\left[\mathrm{Pb}\left(\mathrm{LL}^{\prime}\right)_{2}\right]$ (3a) [4]; both are appropriate for a $\mathrm{Pb}-\mathrm{N}$ coordinate bond, being significantly longer than in the equally four-coordinate $\mathrm{Pb}(\mathrm{II})$ complex $\quad\left[\mathrm{Pb}\left\{\mathrm{N}\left(\mathrm{SiMe}_{3}\right) \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}-4\right) \mathrm{N}\left(\mathrm{SiMe}_{3}\right)\right\}_{2}\right] \quad$ (VIII) or $\left[\mathrm{Pb}\left\{\mathrm{N}\left(\mathrm{SiMe}_{3}\right) \mathrm{P}(\mathrm{Ph})_{2} \mathrm{~N}\left(\mathrm{SiMe}_{3}\right)\right\}_{2}\right]$ (IX) of a mean 2.442 or $2.465 \AA$, respectively [9]. The $\mathrm{P}-\mathrm{N}$ bond length, e.g., $\mathrm{P} 1-\mathrm{N} 1$, and the ligand bite angles in 4, e.g., $\mathrm{N} 1-\mathrm{Pb}-\mathrm{C} 1$, are of a similar order of magnitude, as the mean values in IX, $1.596 \AA$ and 63.0°, respectively [9], or in 3a, 1.569(4) \AA [4], the $\mathrm{P}-\mathrm{N}$ bond in $3 \mathbf{a}$ or 4 is evidently longer than appropriate for a formal double bond, as in $\mathrm{CH}_{2}\left[\mathrm{P}(\mathrm{Ph})_{2}=\mathrm{NSiMe}_{3}\right]_{2} \quad(\mathbf{X})$ with $l(\mathrm{P}=\mathrm{N})$ $1.536(2) \AA \quad[10]$ or $1.539(3) \AA$ in $\mathrm{P}(\mathrm{Ph})_{2}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}-\right.\right.$ $\left.\left.\mathrm{SiMe}_{3}\right)-2\right\}\left\{=\mathrm{N}\left(\mathrm{SiMe}_{3}\right)\right\}$ [11]. The $\mathrm{P}-\mathrm{C}(\mathrm{H}) \mathrm{SiMe}_{3}$ bond in 3a $[1.759(5) \AA][4]$ or $\mathbf{4}$ is somewhat shorter than the $1.822 \pm 0.003 \AA$ in $\mathbf{X}[10]$ or the $1.807 \pm 0.002 \AA$ in $-\left[\mathrm{CH}_{2} \mathrm{P}(\mathrm{Ph})_{2}=\mathrm{N}\left(\mathrm{SiMe}_{3}\right)\right]_{2}$ (XI) [12].

The crystalline $\operatorname{tin}(\mathrm{II})$ complex $\operatorname{Sn}\left(\mathrm{LL}^{\prime \prime}\right)_{2}(6)$ is isomorphous with 4 and hence description of its molecular structure, illustrated in Fig. 2 with selected bond lengths and angles shown in Table 2, is restricted to parameters incorporating the tin atom. The mean $\mathrm{Sn}-\mathrm{N}$ distance in 6 is appropriate for a $\mathrm{Sn} \leftarrow \mathrm{N}$ coordinate bond, being somewhat longer than the mean of $2.362 \AA$ in $\left[\mathrm{Sn}\left\{\mathrm{N}\left(\mathrm{SiMe}_{3}\right) \mathrm{P}(\mathrm{Ph})_{2} \mathrm{~N}\left(\mathrm{SiMe}_{3}\right)\right\}_{2}\right]$ (XII) [9]. The ligand bite angle in 6 , (e.g., $\mathrm{N} 1-\mathrm{Sn}-\mathrm{C} 1$) is similar to the mean of 65.5° in XII [9]. The P1 and P2 atoms are ca. 0.20 and $0.28 \AA$ out of the C1N1Sn and C19N2Sn planes, respectively.

Single crystals of $\mathrm{CH}_{2}\left(\mathrm{SiMe}_{3}\right) \mathrm{P}(\mathrm{Ph})_{2}=\mathrm{N}\left(\mathrm{SiMe}_{3}\right), \mathrm{H}\left(\mathrm{LL}^{\prime}\right)$, III, were grown from a mixture of methylcyclohexane and

Fig. 2. Molecular structure of $\left[\operatorname{Sn}\left(\mathrm{LL}^{\prime \prime}\right)_{2}\right](6)$.

Table 2
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 6

Bond length (\AA)			
$\mathrm{Sn}-\mathrm{C}(1)$	$2.335(6)$	$\mathrm{Si}(1)-\mathrm{N}(1)$	$1.705(6)$
$\mathrm{Sn}-\mathrm{C}(19)$	$2.353(6)$	$\mathrm{Si}(1)-\mathrm{C}(15)$	$1.841(9)$
$\mathrm{Sn}-\mathrm{N}(1)$	$2.480(6)$	$\mathrm{Si}(1)-\mathrm{C}(14)$	$1.866(9)$
$\mathrm{Sn}-\mathrm{N}(2)$	$2.525(6)$	$\mathrm{Si}(1)-\mathrm{C}(7)$	$1.886(10)$
$\mathrm{P}(1)-\mathrm{N}(1)$	$1.599(6)$	$\mathrm{Si}(2)-\mathrm{C}(1)$	$1.870(6)$
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.751(6)$	$\mathrm{Si}(3)-\mathrm{N}(2)$	$1.711(6)$
$\mathrm{P}(1)-\mathrm{C}(8)$	$1.811(7)$	$\mathrm{Si}(3)-\mathrm{C}(33)$	$1.847(9)$
$\mathrm{P}(1)-\mathrm{C}(2)$	$1.812(8)$	$\mathrm{Si}(3)-\mathrm{C}(32)$	$1.861(9)$
$\mathrm{P}(2)-\mathrm{N}(2)$	$1.592(6)$	$\mathrm{Si}(3)-\mathrm{C}(31)$	$1.899(8)$
$\mathrm{P}(2)-\mathrm{C}(19)$	$1.749(7)$	$\mathrm{Si}(4)-\mathrm{C}(19)$	$1.853(7)$
$\mathrm{P}(2)-\mathrm{C}(20)$	$1.817(7)$	$\mathrm{C}(2)-\mathrm{C}(7)$	$1.401(11)$
$\mathrm{P}(2)-\mathrm{C}(26)$	$1.830(7)$	$\mathrm{C}(26)-\mathrm{C}(31)$	$1.395(9)$
Bond angle $\left({ }^{\circ}\right)$			
$\mathrm{C}(1)-\mathrm{Sn}-\mathrm{C}(19)$	$93.8(2)$	$\mathrm{C}(19)-\mathrm{P}(2)-\mathrm{C}(26)$	$117.6(3)$
$\mathrm{C}(1)-\mathrm{Sn}-\mathrm{N}(1)$	$68.4(2)$	$\mathrm{C}(20)-\mathrm{P}(2)-\mathrm{C}(26)$	$105.6(3)$
$\mathrm{C}(19)-\mathrm{Sn}-\mathrm{N}(1)$	$89.3(2)$	$\mathrm{P}(2)-\mathrm{C}(19)-\mathrm{Sn}$	$92.0(3)$
$\mathrm{C}(1)-\mathrm{Sn}-\mathrm{N}(2)$	$88.8(2)$	$\mathrm{C}(31)-\mathrm{C}(26)-\mathrm{P}(2)$	$111.1(5)$
$\mathrm{C}(19)-\mathrm{Sn}-\mathrm{N}(2)$	$67.5(2)$	$\mathrm{N}(1)-\mathrm{Si}(1)-\mathrm{C}(7)$	$97.9(4)$
$\mathrm{N}(1)-\mathrm{Sn}-\mathrm{N}(2)$	$146.73(18)$	$\mathrm{N}(2)-\mathrm{Si}(3)-\mathrm{C}(31)$	$97.9(3)$
$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{C}(1)$	$107.9(3)$	$\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{Si}(1)$	$114.6(4)$
$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{C}(8)$	$112.5(3)$	$\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{Sn}$	$90.6(2)$
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(8)$	$110.8(3)$	$\mathrm{Si}(1)-\mathrm{N}(1)-\mathrm{Sn}$	$131.2(3)$
$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{C}(2)$	$103.5(4)$	$\mathrm{P}(2)-\mathrm{N}(2)-\mathrm{Si}(3)$	$114.6(3)$
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(2)$	$117.1(3)$	$\mathrm{P}(2)-\mathrm{N}(2)-\mathrm{Sn}$	$89.8(2)$
$\mathrm{C}(8)-\mathrm{P}(1)-\mathrm{C}(2)$	$104.9(3)$	$\mathrm{Si}(3)-\mathrm{N}(2)-\mathrm{Sn}$	$134.3(3)$
$\mathrm{N}(2)-\mathrm{P}(2)-\mathrm{C}(19)$	$108.4(3)$	$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{Si}(2)$	$123.4(4)$
$\mathrm{N}(2)-\mathrm{P}(2)-\mathrm{C}(20)$	$112.9(3)$	$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{Sn}$	$91.9(3)$
$\mathrm{C}(19)-\mathrm{P}(2)-\mathrm{C}(20)$	$108.6(3)$	$\mathrm{Si}(2)-\mathrm{C}(1)-\mathrm{Sn}$	$110.0(3)$
$\mathrm{N}(2)-\mathrm{P}(2)-\mathrm{C}(26)$	$103.9(3)$		

diethyl ether (9:1) at $-25^{\circ} \mathrm{C}$. The molecular structure is shown in Fig. 3, selected geometric parameters being listed in Table 3. The phosphorus atom is in a distorted tetrahedral environment, the $\mathrm{N}-\mathrm{P}-\mathrm{C} 1$ and $\mathrm{C} 8-\mathrm{P}-\mathrm{C} 14$ bond angles being the widest and narrowest, respectively; the former is

Fig. 3. Molecular structure of $\mathrm{H}\left(\mathrm{LL}^{\prime}\right)$ (III).

Table 3
Selected bond lengths (\AA) and angles (${ }^{\circ}$) for III

Bond length (\AA)			
$\mathrm{P}-\mathrm{N}$	$1.544(2)$	$\mathrm{P}-\mathrm{C}(8)$	$1.825(2)$
$\mathrm{P}-\mathrm{C}(1)$	$1.803(2)$	$\mathrm{Si}(1)-\mathrm{C}(1)$	$1.892(2)$
$\mathrm{P}-\mathrm{C}(14)$	$1.818(2)$	$\mathrm{Si}(2)-\mathrm{N}$	$1.680(2)$
Bond angle $\left(^{\circ}\right)$			
$\mathrm{N}-\mathrm{P}-\mathrm{C}(1)$	$117.28(11)$	$\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(8)$	$106.17(10)$
$\mathrm{N}-\mathrm{P}-\mathrm{C}(14)$	$109.95(10)$	$\mathrm{C}(14)-\mathrm{P}-\mathrm{C}(8)$	$103.29(10)$
$\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(14)$	$104.64(11)$	$\mathrm{P}-\mathrm{N}-\mathrm{Si}(2)$	$143.89(13)$
$\mathrm{N}-\mathrm{P}-\mathrm{C}(8)$	$114.21(10)$	$\mathrm{P}-\mathrm{C}(1)-\mathrm{Si}(1)$	$119.60(3)$

much wider than the $\mathrm{N}-\mathrm{P}-\mathrm{C}_{\text {sp3 }}$ bond angle in the strained four-membered ring of $\left[\mathrm{Li}\left(\mathrm{LL}^{\prime}\right)\left(\mathrm{OEt}_{2}\right)_{2}\right]\left[110.2(1)^{\circ}\right][7], 4$ or 6 and the $114.7(3)$ in the open-chain compound XI [12]. The $\mathrm{P}-\mathrm{C}(\mathrm{H})_{2}$ bond length is close to that of the $\mathrm{P}-\mathrm{C}(\mathrm{H})_{2}$ bond of $1.807 \pm 0.002 \AA$ in $-\left[\mathrm{CH}_{2} \mathrm{P}(\mathrm{Ph})_{2}=\mathrm{N}\left(\mathrm{SiMe}_{3}\right)\right]_{2}$ (XI), but much longer than in $\mathbf{4 , 6}$ or $\left[\mathrm{Li}\left(\mathrm{LL}^{\prime}\right)\left(\mathrm{OEt}_{2}\right)_{2}\right]$, $1.702(3) \AA$ [7]. The $\mathrm{P}-\mathrm{N}$ bond in the latter, 1.592(2) $\AA, 4$ and $\mathbf{6}$ are of similar magnitude but much longer than the $1.537 \pm 0.007 \AA$ of XI [12] which is close to the value in III.

Single crystals of $\mathrm{CH}_{2}\left(\mathrm{SiMe}_{3}\right) \stackrel{\mathrm{P}(\mathrm{Ph})\left\{=\mathrm{NSi}\left(\mathrm{Me}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}-1,2\right\} \text {, }}{ }$ $\mathrm{H}\left(\mathrm{LL}^{\prime \prime}\right)$, IV, were obtained adventitiously from the in situ prepared Pb complex $\mathrm{Pb}\left(\mathrm{LL}^{\prime \prime}\right)_{2}$ under aerobic conditions. The molecular structure is illustrated in Fig. 4, with some geometric parameters listed in Table 4. The bicyclic moiety, comprising the ortho-phenylene ring and its fused C8PNSiC9 neighbour are almost coplanar. The phosphorus atom is in a distorted tetrahedral environment with the $\mathrm{N}-\mathrm{P}-\mathrm{C} 1$ and the $\mathrm{N}-\mathrm{P}-\mathrm{C} 8$ angles the widest and narrowest, respectively. The former is only very slightly narrower than the corresponding $\mathrm{N}-\mathrm{P}-\mathrm{C}_{\text {sp3 }}$ angle of III. Likewise, the $\mathrm{P}-\mathrm{C} 1\left[\mathrm{P}-\mathrm{C}(\mathrm{H})_{2}\right]$ bond lengths in the two compounds are virtually identical. The principal points of

Fig. 4. Molecular structure of $\mathrm{H}\left(\mathrm{LL}^{\prime \prime}\right)(\mathbf{I V})$.

Table 4
Selected bond lengths ((\AA) and angles $\left({ }^{\circ}\right)$ for IV

Bond length (\AA)			
$\mathrm{P}-\mathrm{N}$	$1.587(5)$	$\mathrm{Si}(1)-\mathrm{N}$	$1.689(5)$
$\mathrm{P}-\mathrm{C}(1)$	$1.779(6)$	$\mathrm{Si}(1)-\mathrm{C}(9)$	$1.884(6)$
$\mathrm{P}-\mathrm{C}(2)$	$1.816(6)$	$\mathrm{Si}(2)-\mathrm{C}(1)$	$1.887(6)$
$\mathrm{P}-\mathrm{C}(8)$	$1.819(6)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.387(8)$
Bond angle $\left(^{\circ}\right)$			
$\mathrm{N}-\mathrm{P}-\mathrm{C}(1)$	$116.0(3)$	$\mathrm{N}-\mathrm{Si}(1)-\mathrm{C}(9)$	$99.5(3)$
$\mathrm{N}-\mathrm{P}-\mathrm{C}(2)$	$113.0(3)$	$\mathrm{P}-\mathrm{N}-\mathrm{Si}(1)$	$112.8(3)$
$\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(2)$	$106.4(3)$	$\mathrm{P}-\mathrm{C}(1)-\mathrm{Si}(2)$	$116.3(3)$
$\mathrm{N}-\mathrm{P}-\mathrm{C}(8)$	$105.1(3)$	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{P}$	$110.4(4)$
$\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(8)$	$109.0(3)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{Si}(1)$	$112.0(4)$
$\mathrm{C}(2)-\mathrm{P}-\mathrm{C}(8)$	$106.9(3)$		

difference between the two, attributable to the silylphenylation in IV, resides in the environment at the nitrogen atom, the $\mathrm{P}-\mathrm{N}$ bond being appreciably longer in IV than III and the $\mathrm{P}-\mathrm{N}-$ Sil bond angle significantly narrower in IV; however both these parameters in IV are close to the corresponding values in 4 and 6 .

3. Experimental

All reactions were performed under argon using standard Schlenk techniques. The THF and diethyl ether were dried using sodium-benzophenone; hexane and pentane were dried using sodium-potassium alloy. The compounds $\mathrm{Li}\left(\mathrm{LL}^{\prime \prime}\right)$ (1b) [4] and HLL^{\prime} (III) [7] were prepared by published methods. The NMR spectra were recorded on Bruker AC-P250, DPX 300, WM-360 or AMX-500 instruments, and the solvent resonances were used as the internal references for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectra; $\mathrm{H}_{3} \mathrm{PO}_{4}$ (85% aqueous solution), SnMe_{4} and PbMe_{4} were the external references for ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\},{ }^{119} \mathrm{Sn}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{207} \mathrm{~Pb}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra, respectively; unless other stated, spectra were recorded at 298 K in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $360.1\left({ }^{1} \mathrm{H}\right), 62.9\left({ }^{13} \mathrm{C}\right)$, $97.3\left({ }^{7} \mathrm{Li}\right), 99.4\left({ }^{29} \mathrm{Si}\right), 101.3\left({ }^{31} \mathrm{P}\right), 93.3\left({ }^{119} \mathrm{Sn}\right)$ or 52.1 $\left({ }^{207} \mathrm{~Pb}\right) \mathrm{MHz}$. Elemental analyses were carried out by Medac Ltd., Brunel University. Melting points were determined under argon in sealed capillaries on an electrothermal apparatus and were uncorrected.

A solution of $\mathrm{LiBu}^{n}\left(2.3 \mathrm{~cm}^{3}\right.$ of a $1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexane, 3.68 mmol) was added dropwise to a stirred solution of HLL^{\prime} (III) $(1.27 \mathrm{~g}, 3.54 \mathrm{mmol})$ in hexane $\left(30 \mathrm{~cm}^{3}\right)$ at $-20^{\circ} \mathrm{C}$. The solution was allowed to warm to room temperature and was stirred for 3 h . The solution was concentrated in vacuo to ca. $3 \mathrm{~cm}^{3}$, yielding colourless crystals of compound 1a (85%), m.p. $135-138{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 0.10\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right), 0.13\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right), 0.17$ (d, $1 \mathrm{H}, J=13.8 \mathrm{~Hz}, \mathrm{CH}$); 7.19 (s), 7.21 (s), 7.89 (m) $(\mathrm{Ph}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 3.68\left(\mathrm{~d}, J=3.5 \mathrm{~Hz}, \mathrm{SiMe}_{3}\right), 4.13$ (d, $J=4.6 \mathrm{~Hz}, \quad \mathrm{SiMe}_{3}$), $14.92(\mathrm{~d}, \quad J=68.6 \mathrm{~Hz}, \quad \mathrm{CH})$, $127.65(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 128.28(\mathrm{~s}), 132.12(\mathrm{~d}, J=9.8 \mathrm{~Hz})$, 147.93 (d, $J=84.2 \mathrm{~Hz}$) (Ph); ${ }^{7} \mathrm{Li}\left\{{ }^{1} \mathrm{H}\right\} \quad$ NMR: $\delta \quad 2.23$; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101.3 MHz): δ 33.32. EI-MS [m/z (\%) (assignment)]: 359 (32) $[\mathrm{M}-\mathrm{Li}+1]^{+}, 344$ (100) $[\mathrm{M}-\mathrm{Me}-\mathrm{Li}+1]^{+}, 272$ (26) $\left[\mathrm{M}-\mathrm{Li}-\mathrm{CHSiMe}_{3}\right]^{+}, 135$ (29) $\left[\mathrm{M}-\mathrm{Li}-2 \mathrm{SiMe}_{3}-\mathrm{Ph}\right]^{+}$, 73 (22) $\left[\mathrm{SiMe}_{3}\right]^{+}$. Elemental analysis for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{LiNPSi}_{2}$: found \% (calculated \%), C 62.3 (62.4), H 8.02 (8.00), N 3.95 (3.83).

3.2. Synthesis of $\left[\left(\underset{\mathrm{LiCH}\left(\mathrm{SiMe}_{3}\right) P(\mathrm{Ph})\{=\mathrm{N}}{ } \mathrm{Si}\left(\mathrm{Me}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}-1,2\right\}\right]_{2}$ (2)

A solution of $\mathrm{LiBu}^{n}\left(2.8 \mathrm{~cm}^{3}\right.$ of a $1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexane, 4.38 mmol) was added to a stirred solution of $\mathrm{Li}\left(\mathrm{LL}^{\prime}\right)(\mathbf{1 a})(1.60 \mathrm{~g}, 4.38 \mathrm{mmol})$ in hexane $\left(30 \mathrm{~cm}^{3}\right)$ at room temperature. The solution was stirred for 1 h and then refluxed for 4 h . The pale yellow solution was concentrated
to ca. $3 \mathrm{~cm}^{3}$, yielding colourless crystals of compound 2 $(1.05 \mathrm{~g}, 69 \%)$, m.p. $214-217^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta-0.02(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{SiMe}_{3}\right), 0.32\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right) \mathrm{Me}\right], 0.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}(\mathrm{Me}) \mathrm{CH}_{3}\right)$, 0.92 (d, 1 H, J=4.9 Hz, CH), 7.03-7.15 (m, 5 H, Ph), 7.44$7.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$ and $7.77-7.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.5 MHz): $\delta 2.28(\mathrm{~d}, J=5.1 \mathrm{~Hz}, \mathrm{Me}), 2.77$ (d, $J=4.0 \mathrm{~Hz}, \quad \mathrm{Me}), \quad 2.91 \quad(\mathrm{~d}, \quad J=2.1 \mathrm{~Hz}, \quad \mathrm{Me}), \quad 6.50$ (d, $J=86.6 \mathrm{~Hz}) ; 127.80(\mathrm{~s}), 128.37(\mathrm{~d}, J=10.8 \mathrm{~Hz}), 128.75$ (d, $J=5.5 \mathrm{~Hz}$), 128.93 (s), $129.25(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 129.58$ (d, $\quad J=9.8 \mathrm{~Hz}), \quad 130.03(\mathrm{~d}, \quad J=2.6 \mathrm{~Hz}), \quad 130.79(\mathrm{~d}$, $J=15.9 \mathrm{~Hz}), \quad 140.81 \quad(\mathrm{~d}, \quad J=86.9 \mathrm{~Hz}), \quad 147.01 \quad(\mathrm{~d}$, $J=29.0 \mathrm{~Hz}), \quad 148.57(\mathrm{~d}, \quad J=84.6 \mathrm{~Hz}) ;{ }^{7} \mathrm{Li}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ (97.3 MHz): $\delta 2.05 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: δ 48.70. EI-MS [m/z (\%) (assignment)]: 342 (58) $[\mathrm{M}-\mathrm{Li}]^{+}, 328 \quad$ (44) $[\mathrm{M}-\mathrm{Me}-\mathrm{Li}+1]^{+}, 256$ (100) $\left[\mathrm{M}-\mathrm{Li}-\mathrm{CHSiMe}_{3}\right]^{+}, 180$ (25) $\left[\mathrm{PhP}(\mathrm{CH}) \mathrm{NSiMe}_{2}\right]^{+}, 137$ (17) $[\mathrm{PhP}(\mathrm{CH}) \mathrm{N}]^{+}$. Elemental analysis for $\mathrm{C}_{36} \mathrm{H}_{50} \mathrm{Li}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Si}_{4}$: found \% (calculated \%), C 60.9 (61.8), H 7.27 (7.21), N 3.15 (4.01).

3.3. Synthesis of $\left[\mathrm{Pb}\left\{\mathrm{CH}\left(\mathrm{SiMe}_{3}\right) \mathrm{P}(\mathrm{Ph})_{2}=\mathrm{NSiMe}_{3}\right\}_{2}\right] \quad$ (3a)

$\mathrm{PbCl}_{2}(0.37 \mathrm{~g}, 1.33 \mathrm{mmol})$ was added at $-45^{\circ} \mathrm{C}$ to a stirred diethyl ether solution of $\left[\mathrm{Li}\left\{\mathrm{CH}\left(\mathrm{SiMe}_{3}\right) \mathrm{P}(\mathrm{Ph})_{2}=\mathrm{NSiMe}_{3}\right\}\right]$ (1a), prepared from $\mathrm{CH}_{2}\left(\mathrm{SiMe}_{3}\right) \mathrm{P}(\mathrm{Ph})_{2}=\mathrm{NSiMe}_{3}(0.96 \mathrm{~g}$, $2.67 \mathrm{mmol})$ and $\mathrm{LiBu}^{n}\left(1.7 \mathrm{~cm}^{3}\right.$ of a $1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexane, 2.72 mmol). The mixture was allowed to warm to room temperature and was stirred overnight. Volatiles were removed in vacuo. The residue was extracted with pentane and the extract was filtered. The filtrate was concentrated in vacuo to afford yellow crystals of complex 3a ($0.62 \mathrm{~g}, 50 \%$), m.p. $148-152{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta-0.01$ (s, 18 $\left.\mathrm{H}, \mathrm{SiMe}_{3}\right), 0.20\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{SiMe}_{3}\right), 1.37(\mathrm{~d}, 2 \mathrm{H}, J=15.8 \mathrm{~Hz}$, $\mathrm{CH}) ; 7.00-7.05(\mathrm{~m}), 7.15-7.22(\mathrm{~m}), 7.64-7.69(\mathrm{~m}), 7.79-$ $7.85(\mathrm{~m})(\mathrm{Ph}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 3.26\left(\mathrm{~d}, J=4.2 \mathrm{~Hz}, \mathrm{SiMe}_{3}\right)$, $4.01\left(\mathrm{~d}, J=3.8 \mathrm{~Hz}, \mathrm{SiMe}_{3}\right), 39.47(\mathrm{~d}, J=70.5 \mathrm{~Hz}, \mathrm{CH})$; $128.20(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 128.37(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 130.78(\mathrm{~s})$, $131.03(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 131.92(\mathrm{~d}, J=10.4 \mathrm{~Hz}), 140.20(\mathrm{~d}$, $J=83.7 \mathrm{~Hz}), 144.17(\mathrm{~d}, J=84.9 \mathrm{~Hz})(\mathrm{Ph}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 19.5$ (s, with satellite peaks, $J=308 \mathrm{~Hz}$); ${ }^{207} \mathrm{~Pb}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 2787.6$ ($\mathrm{t}, J=306 \mathrm{~Hz}$). EI-MS [$\mathrm{m} / \mathrm{z}(\%)$ (assignment)]: 924 (1\%) ([M] $\left.]^{+}\right)$. Elemental analysis for $\mathrm{C}_{38} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{PbSi}_{4}$: found \% (calculated \%), C 49.2 (49.4), H 6.36 (6.32), N 2.90 (3.03).

3.4. Synthesis of $\left[\mathrm{Pb}\left\{\mathrm{CH}\left(\mathrm{SiMe}_{2} \mathrm{NEt}_{2}\right) P(\mathrm{Ph})_{2}=\mathrm{NSiMe}_{3}\right\}_{2}\right] \quad$ (3b)

Complex 3b was obtained similarly as for 3a. $\left[\mathrm{Li}\left\{\mathrm{CH}\left(\mathrm{SiMe}_{2} \mathrm{NEt}_{2}\right) \mathrm{PPh}_{2}=\mathrm{NSiMe} 3\right\}\right]$ (1b) $(0.84 \mathrm{~g}, \quad 1.99 \mathrm{mmol})$ was treated with $\mathrm{PbCl}_{2}(0.27 \mathrm{~g}, 0.97 \mathrm{mmol})$ to yield the yellow crystalline complex $\mathbf{3 b}(0.51 \mathrm{~g}, 49 \%)$, m.p. $148-152{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR: $\delta 0.02\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{SiMe}_{3}\right), 0.17(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}), 0.28$ ($\mathrm{s}, 6 \mathrm{H}, \mathrm{SiMe}$), $1.03(\mathrm{t}, 12 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{Me}), 1.28(\mathrm{~d}, 2 \mathrm{H}$, $J=14.6 \mathrm{~Hz}, \mathrm{CH}), 2.97\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NEt}_{2}\right) ; 7.05(\mathrm{~s}), 7.20-7.28$ (m), 7.73-7.77 (m), 7.85-7.90(m) (Ph); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: δ 0.48 (d, $J=2.8 \mathrm{~Hz}, \mathrm{SiMe}), 2.36(\mathrm{~d}, J=3.2 \mathrm{~Hz}, \mathrm{SiMe}), 3.25$ (d, $J=4.5 \mathrm{~Hz}, \quad \mathrm{SiMe}_{3}$), $15.79\left(\mathrm{~s}, \quad \mathrm{NCH}_{2}\right), 39.20(\mathrm{~d}$, $J=70.9 \mathrm{~Hz}, \mathrm{CH}), 40.13(\mathrm{~s}, \mathrm{Me}) ; 128.03(\mathrm{~d}, J=16.3 \mathrm{~Hz})$,
$128.13(\mathrm{~d}, J=11.1 \mathrm{~Hz}), 130.32(\mathrm{~s}), 130.57(\mathrm{~d}, J=13.0 \mathrm{~Hz})$, $131.15(\mathrm{~d}, J=10.2 \mathrm{~Hz}), 131.60(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 131.87(\mathrm{~d}$, $J=10.6 \mathrm{~Hz}), 141.85(\mathrm{~d}, \quad J=82.8 \mathrm{~Hz}), 143.17(\mathrm{~d}, \quad J=$ $86.5 \mathrm{~Hz})(\mathrm{Ph}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 17.05(\mathrm{~s}$, with satellite peaks, $J=304.7 \mathrm{~Hz}) ;{ }^{207} \mathrm{~Pb}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 2936.9(\mathrm{t}, J=303 \mathrm{~Hz})$. EI-MS $\left[m / z(\%)(\right.$ assignment) $]: 1038(0.1 \%)\left([M]^{+}\right)$. Elemental analysis for $\mathrm{C}_{44} \mathrm{H}_{72} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{PbSi}_{4}$: found $\%$ (calculated $\%$), C 50.8 (50.9), H 7.16 (6.99), N 5.47 (5.39).

3.5. Synthesis of $\left[\mathrm{Pb}\left(\mathrm{CH}\left(\mathrm{SiMe}_{3}\right) \mathrm{P}(\mathrm{Ph})\left\{=\mathrm{N} \operatorname{Si}\left(\mathrm{Me}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}-1,2\right\}\right)_{2}\right]$ (4)

Complex 4 was prepared similarly as for 3a. $\left[\mathrm{LiCH}\left(\mathrm{SiMe}_{3}\right) \mathrm{P}(\mathrm{Ph})\left\{=\mathrm{NSi}\left(\mathrm{Me}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}-1,2\right\}\right]_{2} \quad$ (2) $\quad(0.57 \mathrm{~g}, \quad 1.63$ $\mathrm{mmol})$ was treated with $\mathrm{PbCl}_{2}(0.23 \mathrm{~g}, 0.82 \mathrm{mmol})$ to produce colourless crystals of complex $4(0.35 \mathrm{~g}, 48 \%)$, m.p. $90-92{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 0.31\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{SiMe}_{3}\right), 0.53(\mathrm{~s}, 6 \mathrm{H}$, SiMe), $0.69(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}), 1.43(\mathrm{~d}, 2 \mathrm{H}, J=9.5 \mathrm{~Hz}, \mathrm{CH})$; 7.06-7.25 (m), 7.54-7.65 (m) $\left(\mathrm{Ph}+\mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 1.63(\mathrm{~d}, J=6.2 \mathrm{~Hz}, \mathrm{SiMe}), 2.01\left(\mathrm{~d}, J=3.9 \mathrm{~Hz}, \mathrm{SiMe}_{3}\right)$, 2.39 (d, $J=2.4 \mathrm{~Hz}, S i M e), 28.22(\mathrm{~d}, J=61.9 \mathrm{~Hz}, \mathrm{CH})$; $127.05(\mathrm{~d}, J=13.4 \mathrm{~Hz}), 128.54(\mathrm{~d}, J=11.2 \mathrm{~Hz}), 129.14(\mathrm{~d}$, $J=10.2 \mathrm{~Hz}), \quad 129.66(\mathrm{~d}, \quad J=2.8 \mathrm{~Hz}), 129.87(\mathrm{~d}, \quad J=$ $2.8 \mathrm{~Hz}), 131.10(\mathrm{~d}, J=16.5 \mathrm{~Hz}), 141.26(\mathrm{~d}, J=86.9 \mathrm{~Hz})$, $147.96 \quad(\mathrm{~d}, \quad J=30.8 \mathrm{~Hz}), \quad 153.65 \quad(\mathrm{~d}, \quad J=77.0 \mathrm{~Hz})$ $\left(\mathrm{Ph}+\mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 40.3$ (s, with satellite peaks, $J=311.8 \mathrm{~Hz}) . \quad{ }^{207} \mathrm{~Pb}\left\{{ }^{1} \mathrm{H}\right\} \quad$ NMR: $\delta \quad 1998.3 \quad(\mathrm{t}, \quad J=$ 313.3 Hz). EI-MS [m/z (\%) (assignment)]: 892 (5 \%) ([M] ${ }^{+}$). Elemental analysis for $\mathrm{C}_{36} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{PbSi}_{4}$: found \% (calculated \%), C 47.9 (48.5), H 5.65 (5.65), N 3.09 (3.14).

3.6. Synthesis of $\left[\mathrm{Sn}\left(\mathrm{CH}\left(\mathrm{SiMe}_{3}\right) \mathrm{P}(\mathrm{Ph})\left\{=\mathrm{N} \operatorname{Si}\left(\mathrm{Me}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}-1,2\right\}\right)_{2}\right]$ (6)

$\mathrm{SnCl}_{2}(0.58 \mathrm{~g}, 3.05 \mathrm{mmol})$ was added to a diethyl ether (ca. $30 \mathrm{~cm}^{3}$) solution of $\left[\mathrm{Li}\left\{\mathrm{CH}\left(\mathrm{SiMe}_{3}\right) \mathrm{PPh}_{2}=\mathrm{NSiMe}_{3}\right\}\right]$ (1a) $(1.10 \mathrm{~g}, 3.01 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ with stirring. The mixture was allowed to warm to room temperature and was stirred overnight. The stirred mixture was recooled to $-78^{\circ} \mathrm{C}$ and $\mathrm{LiBu}^{n}\left(1.9 \mathrm{~cm}^{3}\right.$ of a $1.6 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ hexane solution, 3.04 mmol) was added dropwise. Stirring was continued for 4 h at room temperature. Solvent was removed in vacuo and the solid residue was extracted with hexane. The extract was filtered and the filtrate was concentrated to afford colourless crystals of $6(0.65 \mathrm{~g}, 54 \%)$, m.p. 183$186{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 0.27\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{SiMe}_{3}\right), 0.43(\mathrm{~s}, 6 \mathrm{H}$, SiMe), $0.69(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}), 1.77(\mathrm{~d}, 2 \mathrm{H}, J=10.8 \mathrm{~Hz}$, $\mathrm{CH}) ; 6.92-7.02(\mathrm{~m}), 7.39-7.49(\mathrm{~m})\left(\mathrm{Ph}+\mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 0.74(\mathrm{~d}, J=6.2 \mathrm{~Hz}, \mathrm{SiMe}), 1.60(\mathrm{~d}, J=3.8 \mathrm{~Hz}$, $\left.\mathrm{SiMe}_{3}\right), 2.63(\mathrm{~d}, J=2.1 \mathrm{~Hz}, \mathrm{SiMe}), 18.94(\mathrm{~d}, J=54.7 \mathrm{~Hz}$, CH); 127.47 (d, $J=13.5 \mathrm{~Hz}), 128.55(\mathrm{~d}, J=10.0 \mathrm{~Hz})$, $128.71(\mathrm{~d}, ~ J=11.5 \mathrm{~Hz}), 129.05(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 129.78$ $(\mathrm{d}, J=2.6 \mathrm{~Hz}), 129.91(\mathrm{~d}, \quad J=2.5 \mathrm{~Hz}), 131.62(\mathrm{~d}, J=$ $16.5 \mathrm{~Hz}), 140.55(\mathrm{~d}, J=85.7 \mathrm{~Hz}), 148.31(\mathrm{~d}, J=75.3 \mathrm{~Hz})$, $149.71(\mathrm{~d}, \quad J=30.2 \mathrm{~Hz})\left(\mathrm{Ph}+\mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: δ 44.9 (s, with satellite peaks, $J=162.3, \quad 155.5 \mathrm{~Hz}$); ${ }^{119} \operatorname{Sn}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta-121.4(\mathrm{t}, \quad J=162.6 \mathrm{~Hz}) ;{ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$

NMR: $\delta-0.42$ (s, with satellite peaks, $J=53.5 \mathrm{~Hz}$), 8.53 (d, $J=7.3 \mathrm{~Hz}$). EI-MS $[m / z(\%)$ (assignment)]: 804 (1\%) $\left([\mathrm{M}]^{+}\right), 920(38 \%)\left(\left[\mathrm{Sn}_{2}\left(\mathrm{LL}^{\prime \prime}\right)_{2}-2\right]^{+}\right)$. Elemental analysis for $\mathrm{C}_{36} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Si}_{4} \mathrm{Sn}$: found \% (calculated \%), C 53.0 (53.8), H, 6.18 (6.27), N, 3.13 (3.48).
3.7. A new synthesis of $\mathrm{CH}_{2}\left(\mathrm{SiMe}_{3}\right) P(\mathrm{Ph})_{2}=\mathrm{NSiMe}_{3}$ (III) (by P.G.H. Uiterweerd)

Compound 1a $(1.38 \mathrm{~g}, 3.78 \mathrm{mmol})$ was dissolved in hexane $\left(20 \mathrm{~cm}^{3}\right)$ and cooled to $0^{\circ} \mathrm{C}$. Methanol $\left(0.2 \mathrm{~cm}^{3}\right.$, 4.94 mmol) was added dropwise. The reaction mixture was allowed to warm to room temperature and then stirred for 1 h . The mixture was filtered and the volatiles from the filtrate were removed in vacuo, yielding III ($1.22 \mathrm{~g}, 90 \%$) as a white solid, m.p. $38.5-41.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300.1 MHz): δ 0.01 (s, $9 \mathrm{H}, \mathrm{CSiMe}_{3}$), 0.31 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{NSiMe}_{3}$), 1.44 [d, 1 H , $\left.{ }^{2} J\left({ }^{1} \mathrm{H},{ }^{31} \mathrm{P}\right)=15.2 \mathrm{~Hz}, \mathrm{CH}\right], 7.04-7.08(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}), 7.54-$ $7.60(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121.1 MHz): $\delta 0.46$ (s). X-ray quality crystals were obtained from a mixture of methylcyclohexane:diethyl ether $(9: 1)$ at $-25^{\circ} \mathrm{C}$.

3.8. Synthesis of $\left.\mathrm{CH}_{2}\left(\mathrm{SiMe}_{3}\right) \stackrel{P(\mathrm{Ph})\left\{=\mathrm{NSi}\left(\mathrm{Me}_{2}\right) \mathrm{C}_{6}\right.}{ } \mathrm{H}_{4}-1,2\right\}$ (IV)

$\mathrm{PbCl}_{2}(0.29 \mathrm{~g}, 1.04 \mathrm{mmol})$ was added to a stirred solution of $\left[\mathrm{Li}\left(\mathrm{LL}^{\prime \prime}\right)\right]_{2}(\mathbf{2})(0.75 \mathrm{~g}, 2.15 \mathrm{mmol})$ in diethyl ether (ca. $20 \mathrm{~cm}^{3}$) at $-40^{\circ} \mathrm{C}$. The mixture was stirred for ca. 12 h at room temperature. Volatiles were removed in vacuo and the residue was extracted with pentane. The extract was filtered in the open laboratory and the filtrate was concentrated in vacuo yielding colourless crystals of IV $(0.41 \mathrm{~g}, 56 \%) .{ }^{1} \mathrm{H}$ NMR: $\delta 0.04\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right), 0.54(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiMe}), 0.62(\mathrm{~s}, 3$ $\mathrm{H}, \mathrm{SiMe}), 1.17(\mathrm{t}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}, \mathrm{CH}), 1.51(\mathrm{t}, 1 \mathrm{H}$, $J=14.3 \mathrm{~Hz}, \mathrm{CH}) ; 7.03-7.17,7.32-7.55,7.82-7.87(\mathrm{~m}$, $\left.\mathrm{Ph}+\mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 0.32\left(\mathrm{~d}, J=2.9 \mathrm{~Hz}, \mathrm{SiMe}_{3}\right)$, $2.66(\mathrm{~d}, ~ J=6.6 \mathrm{~Hz}, \mathrm{SiMe}), 2.95(\mathrm{~d}, ~ J=4.0 \mathrm{~Hz}, \mathrm{SiMe})$, $19.66(\mathrm{~d}, J=62.2 \mathrm{~Hz}, \mathrm{CH}), 126.93(\mathrm{~d}, J=11.3 \mathrm{~Hz}), 128.26$
$(\mathrm{d}, J=9.2 \mathrm{~Hz}), 128.42(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 129.81(\mathrm{~d}, J=$ $2.9 \mathrm{~Hz}), 130.45(\mathrm{~d}, ~ J=9.5 \mathrm{~Hz}), 130.63(\mathrm{~d}, ~ J=2.8 \mathrm{~Hz})$, $131.61(\mathrm{~d}, J=17.9 \mathrm{~Hz}), 138.67(\mathrm{~d}, J=92.1 \mathrm{~Hz}), 147.07(\mathrm{~d}$, $J=80.7 \mathrm{~Hz}), 152.30(\mathrm{~d}, J=33.3 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: δ 32.0. X-ray quality crystals were grown from a hexane solution.

3.9. Crystallographic data and structure refinement for 3a, $\mathbf{6}$, III and IV

Diffraction data were collected on an Enraf Nonius CAD4 diffractometer using monochromated Mo K α radiation $(\lambda=0.71073 \AA$) with crystals sealed in capillaries for 4, 6 and IV, or for III coated in oil and directly mounted on the diffractometer under a stream of cold nitrogen gas. The structures were refined on all F^{2} using shelxl-97 [13]. Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC Nos. 289180 (4), 189181 (6), 289178 (III) and 289179 (IV). Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223336 033; e-mail: deposit@ccdc.cam.ac.uk,www: http://www.ccdc.cam.ac.uk (see Table 5).

Acknowledgements

We are grateful to Dr. P.G.N. Uiterweerd for supplying single crystals of III and to the British Council and the Chinese Government for financial support.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jorganchem. 2006.02.011.

Table 5
Crystal data and refinements for complexes 3a, 6, III andIV

	3a	6	III	IV
Formula	$\mathrm{C}_{36} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{PbSi}_{4}$	$\mathrm{C}_{36} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Si}_{4} \mathrm{Sn}$	$\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NPSi}_{2}$	$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NPSi}_{2}$
M	892.3	803.77	359.59	343.6
Temperature (K)	293(2)	293(2)	173(2)	293(2)
Crystal system	Monoclinic	Monoclinic	Monoclinic	Tetragonal
Space group	$P 2_{1} / c$ (No. 14)	$P 2_{1} / c$ (No. 14)	$P 2_{1} / c$ (No. 14)	I4 $1 / a$ (No. 88)
$a(\mathrm{~A})$	12.757(2)	12.681(5)	9.907(2)	$21.635(6)$
b (${ }_{\text {® }}$)	10.763(4)	10.705(2)	$22.965(6)$	21.635(6)
$c(\AA)$	31.388(7)	31.343(9)	10.143(3)	$16.915(5)$
$\beta{ }^{\circ}{ }^{\circ}$)	96.85(2)	96.66(2)	111.36(2)	90
$U\left(\AA^{3}\right)$	4279(2)	4226(2)	2149(1)	7917(4)
Z	4	4	4	16
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$) (mm^{-1})	4.16	0.82	0.24	0.26
Reflections collected	10714	7757	3993	2571
Independent reflections [$R_{\text {(int) }}$]	10282 [0.040]	7413 [0.032]	3769 [0.021]	2412 [0.046]
Reflections with $I>2 \sigma(I)$	4736	4325	3122	1494
Final R indices [$I>2 \sigma(I)$]	$R_{1} 0.060, w R_{2} 0.098$	$R_{1} 0.054, w R_{2} 0.133$	$R_{1} 0.041$, $w R_{2} 0.100$	$R_{1} 0.066, w R_{2} 0.140$
R indices (all data)	$R_{1} 0.164, w R_{2} 0.131$	$R_{1} 0.113, w R_{2} 0.171$	$R_{1} 0.053, w R_{2} 0.108$	$R_{1} 0.124, w R_{2} 0.167$

References

[1] A. Müller, B. Neumüller, K. Dehnicke, Chem. Ber. 129 (1996) 253.
[2] (a) P. Imhoff, R. van Asselt, C.J. Elsevier, M.C. Zoutberg, C.H. Stam, Inorg. Chim. Acta 184 (1991) 73;
(b) P. Imhoff, C.J. Elsevier, J. Organomet. Chem. 361 (1989) C61;
(c) C.J. Elsevier, P. Imhoff, Phosphorus Sulfur 49/50 (1990) 405;
(d) M.W. Avis, K. Vrieze, H. Kooijman, N. Veldman, A.L. Spek, C.J. Elsevier, Inorg. Chem. 34 (1995) 4092;
(e) P. Imhoff, S.C.A. Nefkins, C.J. Elsevier, Organometallics 10 (1991) 1421;
(f) P. Imhoff, R. van Asselt, J.M. Ernsting, K. Vrieze, C.J. Elsevier, W.J.J. Smeets, A.L. Spek, A.P.M. Kentgens, Organometallics 12 (1993) 1523;
(g) M.W. Avis, K. Vrieze, J.M. Ernsting, C.J. Elsevier, N. Veldman, A.L. Spek, K.V. Katti, C.L. Barnes, Organometallics 15 (1996) 2376;
(h) P. Imhoff, J.H. Gülpen, K. Vrieze, W.J.J. Smeets, A.L. Spek, C.J. Elsevier, Inorg. Chim. Acta 235 (1995) 77;
(i) K. Izod, Coordin. Chem. Rev. 227 (2002) 153;
(j) A. Steiner, S. Zacchini, P.I. Richards, Coordin. Chem. Rev. 227 (2002) 193.
[3] F. López-Ortiz, E. Peláez-Arango, B. Tejerina, E. Pérez-Carreno, S. Gareia-Granda, J. Am. Chem. Soc. 117 (1995) 9972.
[4] P.B. Hitchcock, M.F. Lappert, Z.-X. Wang, J. Chem. Soc., Chem. Commun. (1997) 1113.
[5] J.C. Wilburn, R.H. Neilson, Inorg. Chem. 18 (1979) 347.
[6] P.B. Hitchcock, M.F. Lappert, Z.-X. Wang, J. Chem. Soc., Dalton Trans. (1997) 1953.
[7] P.B. Hitchcock, M.F. Lappert, P.G.H. Uiterweerd, Z.-X. Wang, J. Chem. Soc., Dalton Trans. (1999) 3413.
[8] C.G. Stuckwisch, J. Org. Chem. 41 (1976) 1173.
[9] U. Kilimann, M. Noltemeyer, F.T. Edelmann, J. Organomet. Chem. 443 (1993) 35.
[10] A. Müller, M. Möhlen, B. Neumüller, N. Faza, W. Massa, K. Dehnicke, Z. Anorg. Allg. Chem. 625 (1999) 1748.
[11] Z.-X. Wang, C.-Y. Qi, Dalton Trans. (2005) 996.
[12] F. Weller, H.-C. Kang, W. Massa, T. Rubenstahl, F. Kunkel, K. Dehnicke, Z. Naturforsch. B 50 (1995) 1050.
[13] G.M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen, Göttingen, Germany, 1997.

[^0]: * Corresponding author. Tel.: +441273 678316; fax: +441273677196.

 E-mail address: m.f.lappert@sussex.ac.uk (M.F. Lappert).

